Three Synthetic Routes to Single-Crystalline PbS Nanowires with Controlled Growth Direction and Their Electrical Transport Properties

So Young Jang,† Yun Mi Song,† Han Sung Kim,† Yong Jae Cho,† Young Suk Seo,† Gyeong Bok Jung,† Chi-Woo Lee,‡ Jeunghee Park,†,* Minkyung Jung,§ Jinhee Kim,‡ Bongsoo Kim,§ Jin-Gyu Kim,∥ and Youn-Joong Kim†

†Department of Chemistry, Korea University, Jochiwon 339-700, Korea, ‡Korea Research Institute of Standards and Science, Daejeon 305-600, Korea, §Department of Chemistry, KAIST, Daejeon 305-701, Korea, and ∥Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon 305-333, Korea

ABSTRACT Single-crystalline rock-salt PbS nanowires (NWs) were synthesized using three different routes; the solvothermal, chemical vapor transport, and gas-phase substitution reaction of pregrown CdS NWs. They were uniformly grown with the [100] or [110], [112] direction in a controlled manner. In the solvothermal growth, the oriented attachment of the octylamine (OA) ligands enables the NWs to be produced with a controlled morphology and growth direction. As the concentration of OA increases, the growth direction evolves from the [100] to the higher surface-energy [110] and [112] directions under the more thermodynamically controlled growth conditions. In the synthesis involving chemical vapor transport and the substitution reaction, the use of a lower growth temperature causes the higher surface-energy growth direction to change from [100] to [110]. The high-resolution X-ray diffraction pattern and X-ray photoelectron spectroscopy results revealed that a thinner oxide-layer was produced on the surface of the PbS NWs by the substitution reaction. We fabricated field effect transistors using single PbS NW, which showed intrinsic p-type semiconductor characteristics for all three routes. For the PbS NW with a thinner oxide layer, the carrier mobility was measured to be as high as 10 cm² V⁻¹ s⁻¹.

KEYWORDS: PbS nanowires · controlled growth direction · solvothermal · chemical vapor transport · gas-phase substitution · field effect transistors

Since the discovery of carbon nanotubes (CNTs), a tremendous amount of research has been conducted on the synthesis and utilization of one-dimensional (1D) nanostructures (nanorods, nanowires, nanobelts, etc.) as well-defined building blocks for future nanodevices using “bottom up” approaches.¹,² The success of various applications such as high-performance optoelectronic devices, field-effect transistors, logic circuits, nonvolatile memories, and biosensors depends on the quality control of the nanostructures.³⁻⁵ The development of cost-effective techniques for the synthesis of high-quality 1D nanostructures with the desired properties is an important milestone on the way toward their broad commercial application. As one of the important IV–VI semiconductor materials, rock-salt (face-centered cubic) structured lead sulfide (PbS) nanostructures have been the object of particular attention, because of the narrow band gap (0.41 eV in the bulk form at room temperature) and strong quantum confinement effect owing to its large Bohr radius (ca. 18 nm).⁶ PbS nanostructures exhibit a wide range of potential applications, such as IR emission and detection, biological imaging, photovoltaics, and solar cells.⁷⁻¹¹ In particular, there have been a number of reports on the successful synthesis of PbS NWs using various methods, including the template-assisted deposition,¹²⁻¹⁴ hydrothermalmelting,¹⁵⁻²⁰ solvothermal,²¹⁻²⁸ chemical vapor transport (CVT),²⁹⁻³⁴ pyrolysis,³⁵ and electron-beam irradiation techniques.³⁶ However, developing an improved synthesis method that increases the yield of PbS NWs with a controlled morphology and crystal structure still remains quite a challenge.

To enable anisotropic 1D crystal growth, the oriented attachment of a protecting ligand has been employed as an important strategy in solvothermal synthesis. CVT synthesis utilizes the well-known vapor–liquid–solid (VLS) growth mechanism, in which catalytic metal nanoparticles form low-melting point eutectic alloys with the target materials to serve as seeds. In previous studies, both synthesis methods produced exclusively rock-salt PbS NWs with the [100] growth direction.²¹⁻³⁴ Among the other versatile growth methods, the substitution technique (so-called chemical conversion or chemical templating) has been...
ARTICLE

RESULTS AND DISCUSSION

Morphology Controlled Solvothermal Synthesis of PbS NWs Using Octylamine Ligand. The evolution of the morphology and growth direction of the PbS NWs by increasing the concentration of OA was summarized in Scheme 1. Figure 1a displays the TEM image of the PbS nanocrystals (NCs) synthesized at 270 °C for 10 min without OA. The shape of the NCs is octahedral and their average diameter is about 20 nm. The HRTEM image and fast Fourier-transform (FFT) ED pattern (zone axis = [111]) generated from the inversion of the TEM image using Digital Micrograph GMS1.4 software (Gatan Inc.), as shown in the insets, confirm the single-crystalline octahedral NCs having the lateral [110] direction. As the OA is added at a ratio of PbO:OA = 1:1, the zigzagged-shaped NWs start to be produced, as shown in Figure 1b. As the concentration of OA increases to a ratio of PbO:OA = 1:3, the PbS NWs are exclusively synthesized (Figure 1c). The diameter of the NWs is in the range of 40–60 nm with an average value of 50 nm. Figure 1d corresponds to their SEM image, showing their high yield and uniformity. Figure 1e shows the high-resolution TEM (HRTEM) images of a selected zigzagged NW, revealing its perfect single-crystalline nature. The (200) fringes are separated by a distance of 3.0 Å, which is equal to that of cubic bulk PbS crystal (a = 5.931 Å; JCPDS card no. 78-1058). The corresponding selected-area ED (SAED) pattern, measured at the [011] zone axis, confirms the [100] growth direction (inset). The facet of the zigzagged surface is matched to the {111} planes of the cubic unit cell. The EDX analysis confirms that the NWs were composed of Pb and S at a ratio of 1 ± 0.1, as shown in the Supporting Information, Figure S1. We refer to the PbS NWs synthesized using PbO:OA = 1:3 as “PS1”.

As the concentration of OA increases to a ratio of PbO:OA = 1:5, the shape of the NWs becomes straight, and the average diameter of the NWs decreases to 30 ± 5 nm (Figure 1f). Under these conditions, the yield of these straight NWs is much lower than that of the zigzagged ones. Figure 1g shows the HRTEM images and corresponding SAED pattern (zone axis = [111]), confirming their [110] growth direction (inset). The (220) fringes are separated by a distance of 2.1 Å, which is equal to that of cubic PbS crystal. As the concentration of OA increases to a ratio of PbO:OA = 1:8, thicker NWs (average diameter = 50 ± 10 nm) are formed (Figure 1h). A close look reveals that these NWs consisted of two segments (average diameter = 20–30 nm) jointed along the axial direction. Figure 1i and the inset show the HRTEM images of a representative bicrystalline NW and the corresponding FFT ED pattern (zone axis = [011]). This PbS NW has the [112] growth direction with a twinned structure in which the two NW segments share the [111]_c and [111]_c spots, which is perpendicular to the growth direction. (i) and (iii) correspond to the ED patterns of the individual NW segment and (ii) corresponds to that of the twin plane region. The [111] fringes are separated by a distance of 3.4 Å, which is equal to that of cubic bulk PbS crystal.

A number of works reported that amine capping ligands play an important role in inducing the 1D growth of many metals and semiconductors NC, in addition to stabilizing the NCs. It is anticipated that...
with its higher nucleophilic nature, OA would be bound to the positive ions of the growing nanocrystals, similarly to the other amines (i.e., oleylamine, trioctylamine, hexadecylamine, etc.) that were used in previous works. The inherent anisotropy of the surface energies associated with the surface reactivity and/or dipolar interactions was suggested to be the driving force for the 1D growth.80,81 In the cubic unit cell system, there is a general sequence in the surface energy of the crystallographic planes; \{111\} < \{100\} < \{110\}.82 The growth along the higher surface-energy planes could have the lower activation energy barrier. The controlled morphology and growth direction of the PbS NWs obtained by varying the concentration of OA is thought to be strongly related to the relative surface energy of these planes.

Without OA, the reaction product is octahedral NCs terminated by eight \{111\} facets (see Scheme 1). As the OA is added to the reaction mixture as a cosurfactant, the NWs start to grow with a zigzagged morphology that originates from the assembly of the octahedral NC building blocks. The NCs are driven to attach to the higher surface energy planes \{100\} of the growing NWs. Since the nucleophilic OA binds strongly to the crystal surface, the growth rate would decrease, thus allowing more time for the diffusion of the atoms on the crystal surface. Therefore, the growth is expected to occur under thermodynamically controlled conditions, and such an incubation-like process induces the preferred attachment along the \{100\} direction, which has a higher surface energy than the \{111\} direction.

As the OA concentration increases further to PbO:OA = 1:5, the chainlike assemblies evolve to straight NWs with a narrower diameter. These PbS NW are uniformly grown along the \{110\} direction. In the presence of excess OA, the nucleation of the PbS seeds would be further delayed. The existence of this longer induction period between the injection of the stock solution and nucleation of the nanocrystals allows for the good intermixing of the reactants and thermal equilibration of the reaction mixture. Then, the NW growth would occur more slowly through the higher surface-energy \{110\} direction than the \{100\} direction. This, in turn, improves the surface evenness and narrows the diameter distribution.

As the OA concentration increases to PbO:OA = 1:8, the NWs evolve from a straight to twinned morphology with the \{112\} growth direction. The higher concentration of OA decreases the growth rate further, allowing growth to take place along the much higher surface-energy direction associated with the higher index planes, that is \{112\}. The twinning process leads to a defect structure in which two subgrains share a common crystallographic plane; that is, the structure of one subgrain is the mirror reflection of the other in the

![Figure 1.](image-url)
twin plane. It is known that the formation of the [111] twinning structure is favorable, due to its having the lowest surface and volume energies. The present PbS NWs consistently show the [111] twin boundary. As the growth rate drastically decreases, defect sites would develop in the lowest surface-energy planes. The slower growth rate would produce the attachment of two seeds, resulting in the larger diameter than that grown under PbO:OA = 1:5.

CVT Synthesis of PbS NWs. High-purity PbS NWs were synthesized on Au catalytic nanoparticle-deposited Si substrates by the thermal evaporation of PbCl₂ and S powders using the VLS growth mechanism. The Pb and S vapors melt into the Au nanoparticles, followed by the saturation and precipitation from eutectic-melt droplets. Figure 2a shows the SEM image of the high-density PbS NWs grown on the substrates. The TEM image reveals that their diameter is in the range of 60–100 nm, with an average value of 50 nm (Figure 2b). They have an uneven surface, but no nanoparticle impurities. The HRTEM images of a selected PbS NW, revealing its perfect single-crystalline nature. The (111) fringes are separated by a distance of 3.4 Å, which is equal to that of cubic PbS crystal. The corresponding FFT ED pattern, measured at the [011] zone axis, confirms their [100] growth direction (inset). The EDX analysis confirms that the [Pb]/[S] ratio is 1 ± 0.1, as shown in the Supporting Information, Figure S1. We refer to this PbS NW sample, as “PS₂”.

The CVT growth of PbS NWs using PbCl₂ and S sources was demonstrated by a number of research groups. All of these PbS NWs have the [100] growth direction, which is consistent with the present work. The growth temperature would be a major factor in controlling the growth direction of the PbS NWs, as shown in our previous work on MnSe NWs. The preferential growth direction of the PbS NWs is [100] at the present growth temperature (700 °C). If the growth temperature is lowered (so it falls into “thermodynamically controlled reaction regime”), the NWs would grow through the higher surface energy [110] direction that needs the lower activation energy, as occurs in the following substitution reaction synthesis at 600 °C.

Gas-Phase Substitution Reaction from CdS NWs to PbS NWs. CdS NWs (mixed with the CdS NBs) were synthesized by the thermal evaporation of CdS powders, as described elsewhere. Figure 3a shows a typical SEM image of the high-density CdS...
NWs/NBs. The TEM image reveals that their width is in the wide range of 50–300 nm, with an average value of 100 nm (Figure 3b). The HRTEM images and FFT ED pattern (at the [2110] zone axis) show that the CdS NBs have a perfect single-crystalline nature with the [010] growth direction (Figure 3c). The (002) fringes are separated by a distance of about 3.4 Å, which is close to that of the bulk CdS (JCPDS card no. 41-1049; \(a = 4.140 \) Å, \(c = 6.719 \) Å). Figure 3d shows the SEM image of the high-density PbS NWs/NBs, produced by the complete gas-phase substitution reaction (60 min) of the CdS NWs/NBs using PbCl₂ vapor at 700 °C. Figure 3e corresponds to a TEM image showing their general morphology, in which the surface is smooth and the average diameter is 100 ± 50 nm. The HRTEM images reveal that the PbS NWs consist of highly crystalline cubic PbS having the [100] growth direction (Figure 3f). The distance between the (200) planes is about 3.0 Å. Their corresponding FFT ED pattern confirms their single-crystalline nature (inset). The EDX elemental line scanning and spectrum revealed that only Pb and S were present over the whole NWs, with no trace of Cd, as shown in the Supporting Information, Figure S1. All of the PbS NWs we observed had the same [100] growth direction. We refer to this PbS NW sample, as “PS3”.

As the substitution temperature was lowered to 600 °C and the reaction time reduced to 10 min, the CdS NWs or NBs were partially converted to the PbS ones. We refer to this sample, as “PCS”, and examined the four types of PbCdS NWs or NBs (referred to as “PCS1–PCS4”) to comprehend their substitution process. Figure 4a shows a selected NB having no Cd composition. We refer to this NB as “PCS1”. The HRTEM images and FFT ED pattern (zone axis = [112]) reveal their single-crystalline nature and [110] growth direction. The (111) fringes are separated by a distance of about 3.4 Å, which is close to that of the bulk PbS. The EDX elemental mapping reveals the absence of Cd element over the whole NW.

For a number of NBs having a width of 200–300 nm, the substituted PbS is clearly separated from the residual CdS. Figure 4b shows the TEM images of the CdS–PbS NB heterostructures having a width of 200 nm. The PbS segment is produced at the end of the CdS NB, with a separation line perpendicular to the long axis. We refer to this sample as “PCS2”. The EDX elemental mapping of another NB reveals the separation of PbS and CdS along the perpendicular direction of the belt axis. The HRTEM images and corresponding FFT ED pattern confirm the [110] direction of the PbS NB part at the [011] zone axis, being parallel to the belt axis. The (111) fringes of PbS are separated by a distance of about 3.4 Å, which is close to that of the bulk PbS. The belt axis of the CdS NB coincides with the [010] direction, as shown in the FFT ED pattern at the [2110] zone axis. The (010) and (002) fringes of the CdS NBs are separated by a distance of about 3.6 and 3.4 Å, which is close to that of the bulk CdS (JCPDS card no. 41-1049; \(a = 4.140 \) Å, \(c = 6.719 \) Å). Figure 4c shows the TEM image of the PbS–CdS NB heterostructure (PCS3), having the CdS and PbS segments with a separation line along the belt axis. The (010) and (002) fringes of the CdS NBs are separated by a distance of about 3.6 and 3.4 Å, which is close to that of the bulk CdS (JCPDS card no. 41-1049; \(a = 4.140 \) Å, \(c = 6.719 \) Å). Figure 4d shows the TEM image of the PbS–CdS NB heterostructure (PCS4), having the CdS core and PbS shell. The FFT ED pattern (zone axis = [001]) confirms the [110] growth direction of PbS (zone axis = [001]) and the [010] growth direction of CdS (zone axis = [2110]). EDX elemental mapping of another NB reveals the formation of PbS NB attached at the end of the CdS NB. (c) TEM image for another PbS–CdS NB heterostructure (PCS3), having the CdS and PbS segments with a separation line along the belt axis. The insets correspond to the FFT ED patterns confirming the [110] growth direction of PbS (zone axis = [001]) and the [010] growth direction of CdS (zone axis = [2110]). (d) TEM image for the cable structure NW (PCS4) having a CdS core and PbS shell. The FFT ED pattern (zone axis = [111]) confirms the [110] direction of the PbS shell along the wire axis (inset). The EDX line-scanning and elemental mapping reveals the PbS shell sheathing the CdS core.
suggests that the small lattice matching (<5%) between these planes drives the substitution reaction leading to the growth of the PbS.

Figure 4c corresponds to the HRTEM images of another CdS—PbS NB heterostructure, showing the PbS segment formed on one side of the CdS NB, with a separation line parallel to the belt axis. We refer to this NB as “PCS3”. The corresponding FFT ED patterns confirm the [010] direction of CdS (at the [2110] zone axis) and the [110] direction of PbS (at the [001] zone axis) along the belt axis. The TEM and ED pattern analysis of these two heterostructures (PCS2 and PCS3) indicates that the cation substitution takes place without any preference as to the axial or perpendicular direction of the NBS.

On the other hand, the CdS NWs with diameters less than 200 nm usually undergo the cation substitution preferentially along the axial direction. Figure 4d shows the core—shell cable structure NWs, having a higher Pb composition at the outerlayers of CdS NW core. We refer to this core—shell NW as “PCS4”. The EDX line scanning and elemental mapping demonstrate that the PbS shell sheathed the CdS NW core. The averaged value of the Pb content ([Pb]/[Pb]+[Cd]) over the whole NW is estimated to be 22%. The HRTEM images and corresponding FFT ED pattern (at the [111] zone axis) of the PbS shell part confirm its [110] direction along the wire axis. The (220) fringes are separated by a distance of about 2.1 Å, which is close to that of the bulk PbS. We observed another NW, having PbS on one side along the axial direction, as shown in the Supporting Information, Figure S2.

In the gas-phase substitution reaction, the growth direction of the PbS NWs evolved from the [110] to [100] direction as the temperature increased from 600 to 700 °C. This is entirely consistent with the prediction that the higher surface-energy growth along the [110] direction is allowed at the lower temperature, 600 °C (“thermodynamically controlled growth condition”), whereas the lower surface-energy growth along the [100] direction becomes active at the higher temperature, 700 °C (“kinetically controlled growth condition”). At the higher growth temperature, the increased thermal energy allows the lower surface-energy direction growth that needs the higher activation energy barrier. The growth of the PbS NWs via the substitution and CVT reactions at 700 °C produced the same [100] growth direction, suggesting that the growth temperature is a major factor in determining the growth direction of the NWs when the vapor phase is involved in the growth process.

Using the solution-phase cation exchange reaction, Alivisatos group showed that wurtzite CdS nanorod (growth direction = [001]) undergoes partial exchange to Cu2S, followed by conversion of the Cu2S portion to PbS.47 After complete removal of Cu2S, the nanorod consists of the PbS grain attached epitaxially to the CdS, with (111)PbS/(002)CdS and (224)PbS/(110)CdS. The elongated dimension of CdS transforms to the [111] direction of PbS. In contrast, the present NB contains the PbS segment attached epitaxially to the CdS, with (110)PbS/(010)CdS. The HRTEM images of the junction part between the CdS and PbS domains in the PbS—CdS heterostructures suggest that the good lattice matching between the PbS (111) and CdS (010) (or CdS (002) planes promote the substitution reaction leading to the growth of the PbS crystals. This partial substitution provides very important information for understanding the substitution reaction.

XRD and XPS. Figure 5a displays the high-resolution XRD patterns of the PS1—PS3, PCS, CdS NW, and PbS powder samples. The XRD peak of the PS1—PS3 NW samples confirms that they are all highly crystalline cubic PbS crystals without any oxide phases. The PCS sample shows both rock-salt PbS and wurtzite CdS peaks. The PbS (200) peak is displayed on a magnified scale (Figure 5b). The PS1, PS2, and PCS samples show a slight shift to higher angles (<0.03 degrees) compared to that of the PbS powders. This shift to a higher angle can be attributed to the formation of an oxide layer on the surface, as discussed later using the XPS data. In contrast, the PS3 samples (synthesized by substitution at 700 °C) exhibit a...
shift to a lower angle (0.05 degrees), indicating the lesser incorporation of oxygen atoms. In the case of the PCS sample, the peak position shifts negligibly relative to that of the pure PbS NW samples (PS1 and PS2). If the Cd$^{2+}$ ions ($r(\text{Cd}^{2+}) = 0.92$ Å) were to reside at the sites of the larger radius Pb$^{2+}$ ions ($r(\text{Pb}^{2+}) = 1.12$ Å), they would reduce the lattice constant of PbS, which is inconsistent with the present result. The absence of any peak broadening also implies the absence of any defects in the PbS structure after the substitution. The magnified-scaled CdS peaks also show no peak shift or broadening relative to those of the CdS NWs (not shown here), suggesting that the growth of PbS does not deteriorate the crystallinity of CdS. Therefore, the majority of the PbS NWs (or NBs) can grow by forming a PbS domain separated from the CdS NWs, during the substitution reaction.

Figure 6 displays the XPS survey scan of the PbS powder and PS1–PS3 samples, showing only Cd and S peaks. The fine-scanned Pb 4f$_{7/2}$ and 4f$_{5/2}$ peaks of the PS1–PS3 samples were compared with those of PbS powder, as shown in Figure 6b. Each peak was resolved into two bands, P1 and P2, by fitting it into the Voigt function. For the Pb 4f$_{7/2}$ peak, the P1 band at 137.3 eV and the P2 band at 139.0 eV are assigned to the Pb–S and Pb–O bonding structures, respectively. The PS2 sample shows a significant Pb–O band, while that of the PS3 sample has a much lower intensity. The binding energy of the PS1 sample is shifted to the higher energy region and is distributed over a broader range, so the peak cannot be resolved into two bands. This could be due to the presence of residual ligands on the NW surface. The XPS result consistently indicates that the PS3 samples have high quality PbS NWs with a thinner oxide-layer, which are suitable for electronic devices.

PbS NW FETs. We fabricated the PbS NW FET electrodes by the following procedure. The nanowires, dispersed in isopropyl alcohol (IPA), were dropped onto a Si substrate with a 300-nm-thick thermally grown SiO$_2$ layer on which alignment marks had been made. The spatial position and orientation of the nanowires were recorded by digitizing the coordinates from the optical microscopy images. The electrical leads were defined on the selected NW using electron beam lithography. A plasma etching system was used to remove the oxide layer from the outer surface of the NW. For the Ohmic contact, Cr (20 nm)/Au (80 nm) films were deposited on the contact area by electron beam evaporation. The etching and deposition of the electrodes were carried out in situ without breaking the vacuum, in order to prevent the further formation of the oxide layer. The underlying Si substrate was used as the back gate by forming an Ohmic contact with an Al electrode.

We selected a PbS NW from the PS3 sample, because of the thinner oxide-layer on its surface. Figure 7a shows the reproducible source–drain current (I_{SD}) versus voltage (V_{SD}) curves at 10 different gate voltages ($V_{\text{G}} = -20$ to 0 V by 2 V step) obtained from the PbS NW FET device. The inset corresponds to the SEM image of the PbS NW FET. (b) I_{SD} data at $V_{\text{G}} = 0$, $V_{\text{G}} = 0.2$, $V_{\text{G}} = 0.3$, and $V_{\text{G}} = 0.4$ V. The inset represents the log-scaled plot for $V_{\text{G}} = -0.4$ V.
FET is shown in the inset. The channel length is 1 \(\mu \text{m} \) and the diameter is 150 nm. The two-terminal \(I-V_{SD} \) curves exhibit a nearly linear response at zero bias and, thus, the contacts behave, in practical terms, as Ohmic ones. For a given \(V_{SD} \), \(I \) increases considerably with increasing negative \(V_{GS} \), indicating the \(p \)-type semiconductor characteristics of the PbS NW, with a moderate carrier concentration.

To determine the efficiency of the gating behavior, transconductance measurements (\(g = \frac{dI}{dV} \)) were obtained using \(V_{SD} = -0.2, -0.3, \) and \(-0.4 \) V (Figure 7b). At more positive \(V_{GS} \) values, there is no measurable current through the wire. As the negative \(V_{GS} \) increases, the current linearly increases with respect to \(V_{GS} \). The threshold voltage for current onset (\(V_{th} \)) is 12.5 V, as shown in the logarithmic plot of \(V_{SD} = -0.4 \) V (inset). Note that this \(V_{th} \) value is the average of all three \(V_{SD} \) values. The on/off current ratio (\(I_{ON}/I_{OFF} \)) of about \(10^{4} \) is deduced. From the linear region of the \(I-V_{G} \) curve at a fixed \(V_{SD} = -0.4 \) V, the transconductance \(g_m = \frac{dI}{dV_G} \) can be extrapolated. The maximum channel mobility of the device, \(\mu_h \), was estimated to be 10 cm\(^2\) V\(^{-1}\) s\(^{-1}\), using the equation, \(\mu_h = g_m L^2/(CV_{SD}) \), where \(L \) is the channel length (\(\approx 1 \mu \text{m} \)) of the NW FET and \(C \) is the capacitance of the nanowire.\(^{44}\) The capacitance of the nanowire, \(C \), is given by \(C = \frac{2\pi\varepsilon_0L}{\ln(h/r)} \), where \(h \) is the relative dielectric constant of SiO\(_2\) (3.9), \(h \) is the thickness of the silicon oxide layer (\(\approx 300 \text{ nm} \)), and \(r \) is the radius of the nanowire (75 nm). The mobility of the present NW is higher than that of the PbS bulk, 5 cm\(^2\) V\(^{-1}\) s\(^{-1}\) at \(n = 2.5 \times 10^{17} \text{ cm}^{-3} \).\(^{65}\) It is also higher than that of PbSe NWs (\(n = 6 \times 10^{18} \text{ cm}^3 \)) measured by Yang and co-workers.\(^{66}\) Compared to the PS3 NWs, the current level of the other samples (PS1 and PS2) is lower by a factor of at least 10, probably due to their oxide layered surface (Supporting Information, Figure S3). The PbS NW selected from these samples shows \(p \)-type semiconductor characteristics, like that of the PS3 sample.

CONCLUSIONS

We synthesized single-crystalline PbS NWs using three different routes: (i) the solvothermal (PS1), (ii) CVT (PS2), and (iii) gas-phase cation substitution reaction of pregrown CdS NWs (PS3). The PbS NWs consisted of single-crystalline rock-salt structure PbS uniformly grown in the controlled growth direction. The solvothermal reaction produced the \([100],[110],\) and \([112]\) growth directions in a controlled manner. As the OA concentration increases, the growth occurs more slowly under the thermodynamically controlled conditions, inducing the evolution of the growth direction toward the higher surface-energy directions, that is, \([100] \rightarrow [110] \rightarrow [112] \).

The CVT method (at 700 °C) produced single-crystalline PbS NWs grown along the [100] direction. The complete substitution reaction of the CdS NWs (at 700 °C) produced single-crystalline PbS NWs preferentially grown along the [100] direction. At a lower temperature in the substitution reaction (600 °C), PbS NWs were produced with the [110] growth direction. The higher surface-energy growth along the [110] direction is allowed in the thermodynamically controlled lower temperature regime, whereas the lower surface-energy growth along the [100] direction becomes active in the kinetically controlled higher temperature regime. We also observed that the conversion from single-crystalline CdS NWs into PbS NWs proceeds through CdS–PbS heterostructures as an intermediate. The conversion to the PbS NWs would be expected to take place through the lattice matched PbS (111) and CdS (010)/(002) planes.

The synchrotron-radiation XRD and XPS analysis indicates that the PS3 sample consists of PbS NWs with a thinner oxide layer. The NW FET devices fabricated using an individual PbS NW showed \(p \)-type semiconductor characteristics, irrespective of the synthesis method. For the PbS NWs of the PS3 sample, the highest value of the mobility was determined to be about 10 cm\(^2\) V\(^{-1}\) s\(^{-1}\).

EXPERIMENTAL SECTION

For the solvothermal synthesis, lead oxide (PbO, 99.999%), sulfur (S) powder (99.999%), trietylphosphine (TOP, 90%), oleic acid (OLA, \(C_{3}H_{7}COOH \)), octylamine (OA, \(C_{6}H_{13}NH_{2} \)), and 1-octadecene (ODE, \(C_{18}H_{37} \)) were purchased from Sigma-Aldrich or Alfa Co. The procedure was divided into three steps: (1) 178.6 mg (0.8 mmol) of PbO and 0.64 mL (2 mmol) of OLA were dissolved in 3.2 mL (10 mmol) of ODE in a 50 mL three-neck flask equipped with a condenser, and the mixture was heated to 300 °C under argon flow; (2) a solution of 3.85 mg (1.2 mmol) of S dissolved in 1.8 mL (4 mmol) of TOP was swiftly injected into the heated solution, and the reaction mixture was then cooled to 270 °C; (3) the mixture was maintained at 270 °C for 10 min to allow for the growth of the PbS NCs. For the addition of OA, 0.8–8 mmol dissolved in the S-TOP solution was injected into the hot solution in step 2. The other reaction conditions were kept the same as those described above. The molar ratio of the precursors and ligands is \(\text{PbO:OLA:TOP:OA} = 1:5:2:5:5:0–10 \).

For the CVT synthesis of the PbS NWs, lead(II) chloride (PbCl\(_2\), 99.999%, Aldrich) and S (99.98%, Aldrich) powders were placed inside a quartz tube reactor. A silicon substrate on which Au nanoparticles-deposited Si substrate inside a quartz tube reactor. As the source was evaporated at 800 °C for 2 h under an argon flow (300 sccm), the NWs grew on the substrate at 700 °C. To obtain the chemical conversion of the CdS NWs into the PbS NWs, we synthesized the CdS NWs as a first step. CdS (99.98%, Aldrich) powder was placed a few cm apart from an Au nanoparticles-deposited Si substrate inside a quartz tube reactor. As the source was evaporated at 850 °C for 1 h under argon flow, high-density CdS NWs were deposited on the substrates at about 700 °C.\(^{22}\) Then the pregrown CdS NWs were placed in the reactor and PbCl\(_2\) powders were evaporated for 10–60 min at temperatures in the range of 600–700 °C.

The products were analyzed by scanning electron microscopy (SEM, Hitachi S-4700), field-emission transmission electron microscopy (TEM, FEI Tecnai G\(^2\) 200 kV and JEM 2010F),
REFERENCES AND NOTES

